
VINCENT ESCHE
STAFF SOFTWARE ENGINEER

PORTFOLIO | 2025-05-14

 in/vincent.esche
 github.com/regexident
 vincent.esche@gmail.com

RUST PROJECTS

The following projects represent a curated selection from a broader portfolio:

CARGO-MODULES RUST
AUTHOR ACTIVE PROJECT

A command-line tool designed to help Rust developers visualize and
analyze the internal structure of their projects. By offering these insights,
cargo-modules aids developers in understanding and managing the
architecture of their Rust projects.

The tool provides commands to display a crate’s module hierarchy as a
tree, map internal dependencies as a graph, detect cycles within the
crate’s dependency graph, and detect unlinked source files within the
crate’s directory.

I’ve been actively developing/maintaining cargo-modules since 2016
with near-weekly releases. It recently crossed the 1000 Github star mark
and has accumulated over 160,000 downloads on crates.io over the
years.

code-analysis graph-analysis rust rust-analyzer visualization

TRYEXPAND RUST
AUTHOR ACTIVE PROJECT

A snapshot-testing harness for macro expansion.

Invoke cargo expand on a set of test cases, asserting that the macro-
generated source code, or any resulting error messages are the ones
intended.

cargo-expand procedural-macro rust snapshot-testing

test-harness unit-testing

ENUMCAPSULATE RUST
AUTHOR ACTIVE PROJECT

Safe casting for newtype enums and their variants.

A proc-macro crate that provides all the tools you might need for
working with enum state polymorphism, providing derive macros for
safe casting between enums and their (type-unique) variants.

encapsulation enum-polymorphism procedural-macro rust

COMMUNITY

MEETUPS

I am an active member of the Rust
Berlin Meetup, attending regularly
and have also given talks. From
2016 – 2019 I was co-organizer of
the renowned CocoaHeads Berlin
meetup, focused on Apple’s
software technologies, with well
over 1000 members, for which I
organized and moderated monthly
meetup events with an average
attendance of 70-90 people.

MENTORING

I have taught Ruby at the RailsGirls
and RustBridge beginners
workshops several times in
Frankfurt, as well as Berlin and was
a team coach for the RailsGirls
Summer of Code in 2016.

SWIFT EVOLUTION

I am co-author of the “Hashable
Enhancements” (SE-0206) Swift
evolution proposal, which improved
Swift’s security, performance and
extensibility, replacing the existing
error-prone legacy Hashing API with
a modern and robust Rust-like API
for the Swift stdlib. It was accepted
and publicly announced by Apple at
WWDC 2018.

https://linkedin.com/in/vincent.esche
https://github.com/regexident
mailto:vincent.esche@gmail.com
https://github.com/regexident/cargo-modules
https://github.com/regexident/enumcapsulate
https://github.com/regexident/enumcapsulate


SIGNALO RUST
AUTHOR ACTIVE PROJECT

Signalo provides the basic building-blocks for low-level real-time
filtering pipelines, based on zero-cost, zero-allocation abstractions,
which can be assembled via composition.

I developed “signalo” as part of my work at Runvi / NWTN Berlin,
leading both, the iOS app development, as well as development of the
Bluetooth-connected on-device human gait analysis DSP engine, which
was based on signalo’s DSP primitives. The DSP engine was written by
me in pure Rust and integrated into an existing embedded C firmware. It
replaced an existing simplistic C implementation that had been plagued
with frequent crashes.

algorithms digital-signal-processing embedded real-time rust

QUADRATURE RUST
AUTHOR ACTIVE PROJECT

Implementation of a logic-level quadrature decoder, as well as
hardware-level encoder.

A quadrature decoder with error detection, smoothing, and full-, half-,
and quad-stepping support ensures accurate, noise-resistant motion
tracking. It improves reliability in noisy environments and allows tuning
resolution and responsiveness to fit specific motor control or rotary
input needs, which can be crucial given the often noisy output of cheap
rotary decoders.

embedded embedded-rust hardware-driver quadrature rust

state-machine

ALLEN-INTERVALS RUST
AUTHOR ACTIVE PROJECT

An efficient implementation of Allen’s interval relations for Rust’s range
types.

Allen’s interval relations are used in temporal reasoning to describe how
time intervals relate to each other, such as whether one interval occurs
before, during, or overlaps with another. They are commonly used in
artificial intelligence, natural language processing, and scheduling
systems to represent and reason about temporal information.

constraint-programming rust temporal-logic temporal-reasoning

time-intervals

SOFTWARE SECURITY

I reported a security exploit
affecting the Swift Package
Manager (SPM) to Apple in 2017,
which would allow an attacker to
execute arbitrary code during
compilation. Apple resolved the
issue by hardening the SPM build
process via sandboxing, as publicly
announced on stage by Apple at
WWDC 2018.

https://github.com/signalo/signalo
https://github.com/regexident/quadrature
https://github.com/regexident/allen-intervals
https://support.apple.com/en-am/103462


DROPTEST RUST
AUTHOR ACTIVE PROJECT

A Rust helper crate for testing drop-semantics.

The library was specifically developed by me as part of my FFI work at
Daily and provided the necessary tools for testing and thus ensuring
correctness of otherwise very tricky memory semantics (of wrapped C++
WebRTC objects crossing the FFI), especially the mismatch of Rust’s
move semantics and C++‘s move constructors.

memory-management rust unit-testing

GIT-ASSIST RUST
AUTHOR ACTIVE PROJECT

Git-Assist automatically skips all internal commits in pull requests, when
running git bisect, making its use smoother and more efficient on
repositories using the “Rebase and Merge” scheme.

With Git-Assist, you can enjoy a simple, linear history while still using git
bisect to find bugs quickly. By skipping internal commits in pull requests,
it combines the best of “Rebase and Merge” for linear history and
“Squash and Merge” for efficient bug isolation.

git-bisect linear-history rebase-and-merge rust

RUST CONTRIBUTIONS

The following projects represent a curated selection from a broader portfolio:

RUST-ANALYZER RUST
CONTRIBUTOR ACTIVE PROJECT

The the official, modular compiler frontend for the Rust language.

Over the years I’ve contributed several (20+) pull requests (mostly to the
public API of its high-level intermediate representation, aka the HIR) as
part of my work on “cargo-modules” (and more recently a yet-to-be-
released successor-project).

code-analysis compiler-frontend language-server-protocol official

rust

https://github.com/regexident/droptest
https://github.com/regexident/git-assist
https://github.com/rust-lang/rust-analyzer/pulls?q=is%3Apr+author%3Aregexident


ASCENT RUST
CONTRIBUTOR ACTIVE PROJECT

A logic programming language (similar to Datalog) embedded in Rust
via macros that I have made over a dozen contributions to, focussing on
ergonomics, testability, etc.

I’ve recently been using ascent in the context of recursive graph
analysis, specifically for things like calculating the dominator-tree,
transitive closure, reachability, neighborhood, ego-graph of a graph. I’ve
made over a dozen contributions to the project, focussing on improving
user ergonomics, API robustness, and improving overall code quality.

datalog graph-analysis logic-programming rust

WEBRTC-RS RUST
CONTRIBUTOR ACTIVE PROJECT

A pure Rust implementation of the WebRTC stack, which I contributed
about 25k lines of code to, putting me in the top 3 contributors of the
project, focussing mostly on the WebRTC data-channel and media-
constraints.

My most significant contribution to the project was complete and spec-
compliant implementation of the WebRTC constraints API based on the
corresponding Media Capture and Streams W3C spec (25.000+ words),
resulting in +9000 near-fully tested lines of code (240+ unit tests):
#356.

algorithms audio constraint-solver rust video webrtc

RUSTFMT RUST
CONTRIBUTOR ACTIVE PROJECT

The the official, modular compiler frontend for the Rust language.

I made several of contributions to the project, back in 2017, when it was
still very actively developed.

My most significant contribution to the project was the initial
Configuration.md (#1474), that ended up morphing into the official
configuration page.

code-formatter official rust

https://github.com/s-arash/ascent/pulls?q=is%3Apr+author%3Aregexident
https://github.com/webrtc-rs/webrtc/pulls?q=is%3Apr+author%3Aregexident
https://www.w3.org/TR/mediacapture-streams/
https://github.com/webrtc-rs/webrtc/pull/356
https://github.com/rust-lang/rustfmt/pulls?q=is%3Apr+author%3Aregexident
https://github.com/rust-lang/rustfmt/pull/1474
https://rust-lang.github.io/rustfmt
https://rust-lang.github.io/rustfmt


CBINDGEN RUST
CONTRIBUTOR ACTIVE PROJECT

CLI tool that generates C/C++11 headers for Rust libraries which expose
a public C API.

I’ve over the years contributed several pull requests to the project, most
significantly I’ve contributed support for #[repr(transparent)]: [185]
(https://github.com/mozilla/cbindgen/pull/185).

c code-generation ffi rust tooling

SWIFT PROJECTS

The following projects represent a curated selection from a broader portfolio:

XMLCODING SWIFT
AUTHOR INACTIVE PROJECT

A clean and modular implementation of the Codable protocol for XML.

An efficient implementation of a push-parser-based reader, a visitor-
based writer, a formatter for pretty-printing, a type-safe DOM document
abstraction and last, but not least a flexible pair of encoders/decoders
for working with XML.

codable serialization swift xml

CACHE SWIFT
AUTHOR INACTIVE PROJECT

Useful caching data structures in Swift.

Swift implementations of a dictionary-like cache data structure with
support for three fundamental caching strategies: FIFO (First-In, First-
Out), LRU (Least Recently Used), and RR (Random Replacement),
enabling efficient memory management by allowing developers to
control cache eviction policies, thereby optimizing performance and
resource utilization in applications.

cache-eviction-policy caching swift

https://github.com/mozilla/cbindgen/pulls?q=is%3Apr+author%3Aregexident
https://github.com/mozilla/cbindgen/pull/185
https://github.com/regexident/XMLCoding
https://github.com/regexident/Cache


SYNC SWIFT
AUTHOR INACTIVE PROJECT

Useful synchronization primitives in Swift.

Safer and more ergonomic synchronization primitives for Swift by
encapsulating shared data directly within thread-safe types. This high-
level design helps prevent common concurrency bugs by eliminating
manual lock management and making synchronized access more
intuitive and less error-prone.

locking mutex swift synchronization thread-safety

EVENTBUS SWIFT
AUTHOR ARCHIVED PROJECT

A safe-by-default pure Swift alternative to Apple’s
NotificationCenter.

EventBus is a safe-by-default alternative to Apple’s
NotificationCenter. It provides a type-safe API that can safely be
used from multiple threads. It automatically removes subscribers when
they are deallocated. It is to one-to-many notifications what a Delegate
is to one-to-one notifications.

event-bus observer-pattern pub-sub swift

FOREST SWIFT
AUTHOR ARCHIVED PROJECT

A collection of persistent immutable trees, in pure Swift.

A collection of persistent, immutable tree data structures implemented
in Swift, including binary trees, AVL trees, and Red-Black trees. Designed
as functional persistent data structures, they ensure thread-safety and
support maintaining historical versions of data.

avl-tree binary-tree persistent-data-structure red-black-tree swift

value-types

KALMANFILTER SWIFT
AUTHOR ARCHIVED PROJECT

An efficient implementation of a Kalman Filter in Swift, using SIMD.

I became interested in signal filtering and control theory around 2018,
specifically Simultaneous Localization and Calibration (SLAC).
Recognizing a lack of existing Swift implementations of Kalman Filters I
decided to implement my own, based on my other project jounce/surge.

algorithms digital-signal-processing kalman-filter simd swift

https://github.com/regexident/Sync
https://github.com/regexident/EventBus
https://github.com/regexident/Forest
https://github.com/regexident/KalmanFilter
https://github.com/jounce/surge


PARTICLEFILTER SWIFT
AUTHOR ARCHIVED PROJECT

An efficient implementation of a Particle Filter in Swift, using SIMD.

I became interested in signal filtering and control theory around 2018,
specifically Simultaneous Localization and Calibration (SLAC).
Recognizing a lack of existing Swift implementations of Particle Filters I
decided to implement my own, based on my other project jounce/surge.

algorithms digital-signal-processing kalman-filter simd swift

STRATEGIST SWIFT
AUTHOR ARCHIVED PROJECT

Algorithms for building strong, immutable AIs for round-based games.

Strategist provides implementations of several well-known AI algorithms
for round-based games, such as Minimax and Negamax Tree Search
(both with alpha-beta pruning), as well as Monte Carlo Tree Search.

algorithms game-ai simd state-space-search swift

SWIFT CONTRIBUTIONS

The following projects represent a curated selection from a broader portfolio:

SURGE SWIFT
CO-MAINTAINER INACTIVE PROJECT

A highly popular (5300+ GitHub stars) Swift library that uses Apple’s
Accelerate framework to provide high-performance functions for energy-
efficient computation on the CPU by leveraging hardware acceleration
via SIMD.

I became co-maintainer around 2019 and quickly emerged as the 1
contributor of the project, spearheading efforts to modernize, clean up,
and extend the library, as well as significantly improving its test-
coverage.

matrix-multiplication parallelism simd swift

https://github.com/regexident/ParticleFilter
https://github.com/jounce/surge
https://github.com/regexident/strategist
https://github.com/jounce/surge/pulls?q=is%3Apr+author%3Aregexident


SNAPSHOTTESTING SWIFT
CONTRIBUTOR INACTIVE PROJECT

A powerful library for snapshot testing of UI components, data
structures, and more by comparing current output against stored
reference snapshots. It is especially useful in iOS and macOS
development to catch unintended changes in views, JSON, or other
serializable outputs, ensuring UI consistency and data correctness over
time.

I’ve made several contributions to the project, focussing on adding
support for SwiftUI, improving user ergonomics, API robustness, and
improving overall code quality.

snapshot-testing swift swiftui

TYPESCRIPT CONTRIBUTIONS

The following projects represent a curated selection from a broader portfolio:

LAYERCHART TYPESCRIPT
CONTRIBUTOR ACTIVE PROJECT

Composable Svelte chart components to build a large variety of
visualizations.

I have repeatedly contributed to the project, focussing on bug fixes,
usability improvements and most significantly a complete refactor of the
force-simulation implementation, resulting in significant performance
improvements, bug fixes and improved reliability.

d3js force-simulation frontend svelte typescript visualization

https://github.com/pointfreeco/swift-snapshot-testing/pulls?q=is%3Apr+author%3Aregexident
https://github.com/techniq/layerchart/pulls?q=is%3Apr+author%3Aregexident

